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Abstract

Upon establishing the mathematical framework necessary for a proper understanding of the analytical
theory\ a regularized form of the conventional direct boundary integral equation formulation for three!
dimensional elastodynamics is presented for a general anisotropic medium[ Founded on the basis of a full
decomposition of the Green|s functions into regular and singular parts\ the alternative boundary integral
equation format is compact and without demanding mathematical and numerical complexities such as
Cauchy principal values[ Extended to deal with general seismic soil!structure interaction problems in semi!
in_nite media\ the formulation is implemented computationally together with a rigorous treatment of
singular dynamic multi!layered viscoelastic half!space Green|s functions and interfacial boundary tractions
arising in typical soil!structure!foundation con_gurations[ A set of new benchmark numerical results are
included[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The general subject of dynamic soil!structure interaction is relevant to a wide range of appli!
cations such as earthquake!resistant design of structures\ foundations\ tunnels and lifelines[ One
common challenge to these problems is the need to deal with the complex stress wave propagation
in a semi!in_nite soil or geological medium[ In the past decades\ signi_cant analytical advances
have been made in the subject area in terms of mathematical and computational solutions to the
problem[ On the mathematical side\ one can refer to the work of Luco and Westmann "0861# and
Pak and Gobert "0880# as examples on how the classical techniques of singular and dual integral
equations can be applied to some fundamental foundation vibration problems[ For more general
geometries and con_gurations\ use can also be made of the _nite element method by virtue of the
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developments such as those in Lysmer and Kuhlemeyer "0858# and Tassoulas and Kausel "0872#[
Stemming from its intrinsic suitability in dealing with unbounded media\ however\ the boundary
element method has gained the recognition in recent years as the logical tool for this class of
problems\ serving either as an independent candidate "Dominquez and Abascal\ 0876^ Tassoulas\
0878# or a vital component in hybrid procedures "Bielak et al[\ 0880^ Belytschko and Lu\ 0883#[
Within the boundary element framework "Beskos\ 0886#\ one can generally separate the for!
mulations into two categories] the direct and indirect methods[ Direct methods employ the dis!
placement and traction at the boundary as the primary variables "e[g[ Rizzo et al[\ 0874^ Karabalis
and Beskos\ 0876# while indirect methods involve formulating the problem in terms of some
auxiliary source distributions which may be _ctitious or physical in nature "e[g[ Mita and Luco\
0878^ Pak and Ji\ 0883#[ Common to both types of formulation is the task of dealing with the
singularity and discontinuities of the Green|s functions whose accurate evaluation is of utmost
importance[ To establish the boundary element matrices\ such singular solutions must also be
integrated adequately over all elemental boundary surfaces[ Although numerical implementations
in the form of special transformation!quadrature techniques "e[g[ Lachat and Watson\ 0865^ Lean
and Wexler\ 0874# or ad!hoc o}!boundary collocation schemes "e[g[ Mita and Luco\ 0878# have
been proposed to deal with such di.culties\ their performance are intimately related to the speci_c
nature of the singularities and discontinuities of the relevant Green|s functions and can vary from
problem to problem[ To pursue a truly rigorous solution for common soil!structure con_gurations
and geometries\ one must also be ready to tackle the possibility of singular contact stresses and
interfacial tractions which often arise in such mixed boundary value problems in mechanics "Pak
and Abedzadeh\ 0885#[ In this exposition\ an overview of some fundamental theoretical and
computational developments critical to a rigorous application of direct boundary integral equation
methods to general seismic soil!structure interaction analysis is presented[ Most of the issues and
resolutions are\ however\ equally relevant to indirect boundary element formulations[

The paper begins with a basic examination of the theoretical foundation of the direct boundary
integral equation formulation in three!dimensional elastodynamics[ Included are some math!
ematical details which are central to a proper understanding of the method\ but yet commonly
omitted in past treatments[ Upon establishing the conventional boundary integral equation format
in terms of Cauchy principal values of surface integrals\ an alternative form of the direct method
is explored which involves weakly singular integrals only[ Specialized to employ half!space Green|s
functions\ the regularized formulation is extended to both wave radiation and scattering problems[
To further enhance its engineering applications\ a consistent singularity treatment of viscoelastic
multi!layered half!space Green|s functions and a set of singular edge! and corner!boundary
elements to handle unbounded contact tractions at soil!structure interfaces have also been
developed[ As illustrations\ selected numerical results for some benchmark problems are included
for general reference and comparisons[

1[ Fundamental integral representation

With reference to a Cartesian frame "9^ j0\ j1\ j2# for an open regular region V\ the governing
di}erential _eld equations in linearized elastodynamics are
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tij\j¦fi � ru�i\ j $ V "0#

from the balance of linear momentum\ and

tij"j\ t# � Cijkl"j#uk\l"j\ t# "1#

as the stressÐstrain relationship where Cijkl is the fourth!order elasticity tensor with major and
minor symmetries characterizing a general anisotropic medium[ In eqns "0# and "1#\ ui"j\ t# is the
displacement _eld\ tij"j\ t# is the Cauchy stress tensor\ fi is the body!force _eld per unit volume\ r

is the mass density\ and j and t are\ respectively\ the spatial and temporal coordinates[ The general
displacement! and traction!boundary conditions for G � Gu k Gt\ the closed boundary of V\ "see
Fig[ 0# can be expressed as

ui"j\ t# � u½i"j\ t#\ j $ Gu\ t × 9\

ti"j\ t^ n# � tij"j\ t#nj � t½i"j\ t#\ j $ Gt\ t × 9\ "2#

where ni is the outward normal and u½i and t½i are the prescribed displacements and tractions\
respectively[ The initial conditions generally take the form of

ui"j\ 9# � u�i"j#\ j $ V\

u¾i"j\ 9# � v�i"j#\ j $ V[ "3#

For an integral formulation of an initial!boundary value problem\ a convenient point of depar!
ture is Gra.|s reciprocal theorem in elastodynamics "Wheeler and Sternberg\ 0857#[ In terms of
the Riemann convolution de_ned by

ð` ( hŁ"j\ t# � 8
9\ j $ V\ t ³ 9

g
t

9

`"j\ t−s#h"j\ s# ds\ j $ V\ t × 99 "4#

for a pair of functions ` and h\ the theorem can be stated as

Fig[ 0[ Finite region] interior problem[
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gV
fi ( u¼i dVj¦gG

ti ( u¼i dGj−gV
ru�i ( u¼i dVj

� gV
f¼i ( ui dVj¦gG

t¼i ( ui dGj−gV
ru¼u�i ( ui dVj "5#

for two arbitrary elastodynamic states "ui\ tij# and "u¼i\ t¼ij# pertaining to the same solid medium[ In
terms of the initial data\ eqn "5# can be reduced to

gV
fi ( u¼i dVj¦gG

ti ( u¼i dGj¦gV
r"u�iu¼i¦v�iu¼u¾i# dVj

� gV
f¼i ( ui dVj¦gG

t¼i ( ui dGj¦gV
r"u¼u�iui¦v¼v�iu¾i# dVj "6#

in the time domain[ In the frequency domain\ eqn "5# can be expressed even more compactly as

gV
FiU
i dVj¦gG

TiU
i dGj � gV
F
iUi dVj¦gG

T
iUi dGj "7#

where the upper!case of an unknown denotes its Fourier transform with respect to the time\ i[e[

G"j\ v# � Fð`"j\ t#Ł � g
�

−�

`"j\ t#e−ivt dt[ "8#

In view of its convenience in dealing with both elasticity and viscoelasticity problems whose
formulations are analogous in terms of Fourier transforms by means of the correspondence
principle "Christensen\ 0860#\ the frequency!domain approach via eqn "7# will be employed as the
analytical framework in this treatment[

To obtain an integral representation of an elastodynamic state in terms of boundary data\ eqn
"7# can be specialized by setting the body force F
i to be F
k

i which corresponds to a unit point load
in the kth direction acting at a point x $ V\ i[e[

F
k
i "j\ v# � dikd"x−j#\ "09#

where dik is the Kronecker delta and d"x−j# is the three!dimensional Dirac delta function[ The
corresponding Fourier transformed fundamental solutions U
k

i \ T
k
i and T
 k

ij which satisfy the _eld
equations

"CijpqU

k
p\q#\j¦rv1U
k

i ¦dikd"x−j# � 9\ T
k
i � T
 k

ijnj\ T
 k
ij � CijpqU


k
p\q\ "00#

are commonly called the displacement\ traction and stress Green|s functions\ respectively[ To
emphasize their functional dependence\ they will be written as U
k

i "j\ x\ v#\ T
k
i "j\ x\ v^ n# and

T
 k
ij"j\ x\ v#^ collectively\ they describe the response at point j due to a time!harmonic unit point

load acting in the kth direction at point x in V[ By means of eqns "7#Ð"00#\ an integral representation
of the displacement _eld in the interior of the region V "see Fig[ 0# in terms of the boundary
displacements and tractions on G bounding V\ can be written as
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Fig[ 1[ In_nite region] exterior problem[

D"x#Uk"x\ v# � gG
Ti"j\ v^ n#U
k

i "j\ x\ v# dGj−gG
Ui"j\ v#T
k

i "j\ x\ v^ n# dGj

¦gV
Fi"j\ v#U
k

i "j\ x\ v# dVj\ D"x# � 6
0\ x $ V
9\ x ( VÞ7 "01#

in the frequency domain for a general anisotropic medium[
For an unbounded domain V which is exterior to G\ the format of the integral representation in

eqn "01# remains valid provided that "i# the direction of the outward normal for the exterior case
is taken to be opposite to that for the interior case\ and "ii# the solution satis_es

lim
r:� gGr

"Ti"j\ v^ n#U
k
i "j\ x\ v#−Ui"j\ v#T
k

i "j\ x\ v^ n## dGj � 9\ x $ V "02#

where Gr is the spherical outer surface with its radius r : � "see Fig[ 1#[ For integral formulations\
eqn "02# is essential as the generalized regularity condition for unbounded media[

2[ Direct boundary integral equation methods

Fundamental to the mathematical derivation of boundary integral equation formulations is a
clear understanding of the underlying limit process[ To expose some of the intricacies involved\ a
review of the conventional boundary integral equation format is given in this section[ The expo!
sition also helps in setting the stage for an alternative general boundary integral equation for!
mulation which involves only regular and weakly singular integrals that are amenable to analytical
and numerical treatments[
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2[0[ Conventional direct boundary inte`ral equation

To obtain the common limiting form of the fundamental integral eqn "01# as x goes to the
boundary "x : y $ G#\ one may view the boundary G as composed of two surfaces] one is a small
surface region Go of radius o\ centered at the point y^ the other\ G−Go\ is the remainder of the
boundary "see Fig[ 2 for the case of a smooth surface#[ As a result of the foregoing decomposition\
eqn "01# can be rewritten as

Uk"x\ v# � gG
Ti"j\ v^ n#U
k

i "j\ x\ v# dGj−gG−Go

Ui"j\ v#T
k
i "j\ x\ v^ n# dGj

−gGo

Ui"j\ v#T
k
i "j\ x\ v^ n# dGj¦gV

Fi"j\ v#U
k
i "j\ x\ v# dVj\ x $ V\ "03#

where n is the outward normal on G with respect to V[ On account of the di}erent orders of
singularity of three!dimensional displacement and traction fundamental point!load solutions which
behave as

U
k
i "j\ x\ v# � O0

0
=j−x=1 as =j−x= : 9\

T
k
i "j\ x\ v^ n# � O0

0

=j−x=11 as =j−x= : 9\ "04#

respectively\ the limiting form of eqn "03# as x : y $ G can be stated as

Uk"y\ v# � gG
Ti"j\ v^ n#U
k

i "j\ y\ v# dGj− lim
x:y gG−Go

Ui"j\ v#T
k
i "j\ x\ v^ n# dGj

Fig[ 2[ Alternative domains of integration for cik[
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− lim
x:y gGo

ðUi"j\ v#−Ui"y\ v#ŁT
k
i "j\ x\ v^ n# dGj

−Ui"y\ v# lim
x:y gGo

T
k
i "j\ x\ v^ n# dGj¦gV

Fi"j\ v#U
k
i "j\ y\ v# dVj\ x $ V[ "05#

Under the hypothesis that the boundary traction and body!force distributions are su.ciently
regular\ the _rst and the last integrals on the right!hand side of eqn "05# exist in the ordinary sense
as x : y $ G and can be evaluated numerically[ As o : 9\ the second integral on the right!hand side
can be written as

lim
o:9

lim
x:ygG−Go

Ui"j\ v#T
k
i "j\ x\ v^ n# dGj 0 g−G

Ui"j\ v#T
k
i "j\ y\ v^ n# dGj "06#

which is the de_nition of the Cauchy principal value of a surface integral[ With the assumption
that the displacement _eld is Ho�lder continuous\ i[e[

Ui"j\ v# � Ui"y\ v#¦O"=j−y=a# "07#

where 9 ³ a ¾ 0\ the limit of the third term in eqn "05# as o : 9 is

lim
o:9

lim
x:ygGo

ðUi"j\ v#−Ui"y\ v#ŁT
k
i "j\ x\ v^ n# dGj � 9 "08#

as a result of eqn "04#[ By virtue of eqns "06# and "08#\ the limit of eqn "03# as x : y $ G can thus
be expressed as

cik"y#Ui"y\ v# � gG
Ti"j\ v^ n#U
k

i "j\ y\ v# dGj− g−G
Ui"j\ v#T
k

i "j\ y\ v^ n# dGj

¦gV
Fi"j\ v#U
k

i "j\ y\ v# dVj "19#

where

cik"y# � dik¦lim
o:96 lim

x:y gGo

T
k
i "j\ x\ v^ n# dGj7\ y $ G\ x $ V[ "10#

To clarify for eqn "10# the outcome of the series of limit operations whose order cannot be
interchanged due to non!uniform convergence\ it is useful to consider _rst the integral involved
over an alternative closed surface Go¦G
 o\ the latter of which is a partial spherical surface of radius
o\ centered at y as depicted in Fig[ 2 for the case of a smooth boundary[ For x located in V and
therefore outside the domain Vo bounded by Go and G
 o\ the elastodynamic stress Green|s functions
T
k

ij"j\ x\ v# must satisfy the equations of motion

T
 k
ij\j"j\ x\ v# � −rv1U
k

i "j\ x\ v#\ j $ Vo\ x $ V[ "11#
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With the de_nition of T
k
i "j\ x\ v^ n¹# � T
 k

ij"j\ x\ v#n¹ j"j# where n¹j is the unit normal outward of Vo\
an application of the divergence theorem yields

gVo

T
 k
ij\j"j\ x\ v# dVj � gGo¦G
 o

T
k
i "j\ x\ v^ n¹# dGj\ "12#

which in turn implies

gGo

T
k
i "j\ x\ v^ n¹# dGj � −gG
 o

T
k
i "j\ x\ v^ n¹# dGj−rv1gVo

U
k
i "j\ x\ v# dVj[ "13#

By virtue of the regularity of U
k
i "j\ x\ v# in Vo\ it can be shown that

lim
o:96 lim

x:y gVo

U
k
i "j\ x\ v# dVj7� 9[ "14#

With the aid of eqn "13# and the identity

n¹ "j# � −n"j#\ j $ Go\

where n is the outward normal external to V\ eqn "10# can be reduced to

cik"y# � dik¦lim
o:9 gG
 o

T
k
i "j\ y\ v^ n¹# dGj\ y $ G "15#

whose integrand T
k
i "j\ y\ v^ n¹# will stay non!singular for j $ G
 o in the remaining limit process[

For further simpli_cation\ it should be noted that the point!load Green|s function can be
decomposed into a singular part "ðU
k

i Ł0\ ðT
 k
ijŁ0# and a regular part "ðU
k

i Ł1\ ðT
k
ijŁ1# such that

U
k
i "j\ x\ v# � ðU
k

i "j\ x\ v#Ł0¦ðU
k
i "j\ x\ v#Ł1\

T
 k
ij"j\ x\ v^ n# � ðT
 k

ij"j\ x\ v^ n#Ł0¦ðT
 k
ij"j\ x\ v^ n#Ł1\ "16#

the second of which\ in turn\ de_nes the corresponding singular part
ðT
k

i Ł0 and the regular part ðT
k
i Ł1 of the traction Green|s function[ As only ðT
k

i Ł0 will contribute to
the integral over G
 o in eqn "15# as o : 9\ eqn "15# can be reduced to

cij"y# � dik¦lim
o:9 gG
 o

ðT
k
i "j\ y\ v^ n¹#Ł0 dGj\ y $ G\ "17#

which involves only the singular part of the traction Green|s function[ To extract totally the
singularity of the point!load Green|s function for all possible source and observation points in a
piecewise homogeneous\ isotropic\ multi!layered solid\ a case of common interest in many practical
applications\ it can be shown by asymptotic analysis that the simplest choice for the singular part
ðT
k

i Ł0 of the Green|s function without any loss of generality is the static bi!material full!space
Green|s function "Guzina and Pak\ 0887# whose plane of material discontinuity coincides with the
nearest material interface in the multi!layered system[ As will be illustrated later\ the employment
of neither the Kelvin|s state\ i[e[
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ðU
k
i "j\ x\ v#Ł0 �

0
05p"0−n#mr

""2−3n#dik¦r\ir\k#\

ðT
k
i "j\ x\ v^ n#Ł0 �

−0

7p"0−n#r1
"""0−1n#dik¦2r\ir\k#"r\mnm#

−"0−1n#"r\kni−r\ink##\

r � =j−x=\ "18#

nor its half!space counterpart\ Mindlin|s solution\ is satisfactory for such purposes[ For a smooth
G in a homogeneous and isotropic solid\ it can be shown using spherical coordinates that

lim
o:9 gG
 o

ðT
k
i "j\ y\ v^ n¹#Ł0 dGj � −

dik

1
\ i\ k � 0\ 1\ 2\ y $ G "29#

so that cik"y# � dik:1[ For non!smooth boundary points in such a medium\ closed!form results for
cik in three!dimensional problems can also be derived "see Hartmann\ 0871#[ Equations "19#
and "15# constitute the conventional direct boundary integral equation formulation in solid and
geomechanics[

2[1[ Alternative direct boundary inte`ral equation

Despite its traditional appeal\ the direct boundary integral equation formulation\ in terms of
eqns "19# and "15#\ is not free from some perennial objections[ For instance\ the second integral
on the right!hand side of eqn "19# is de_ned in terms of its Cauchy principal value whose
computation requires techniques beyond ordinary quadrature methods "see Lachat and Watson\
0865#[ For nonhomogeneous media and non!smooth boundary geometries\ direct evaluations of
the coe.cients cik in eqn "17# can also pose considerable analytical di.culties[ In this section\ it
will be shown that an alternative form of the boundary integral equation can be developed which
is equally compact but void of such extraneous complexities[ Such a reduction is apt to make direct
boundary integral equation methods more palatable to both engineers and mechanicians[

To begin\ it is useful to note that for both interior and exterior probe the fundamental integral
representation "01# of the response at an interior point may be re!arranged as

gG
Ti"j\ v^ n#U
k

i "j\ x\ v# dGj−gG
ðUi"j\ v#−Ui"x\ v#ŁT
k

i "j\ x\ v^ n# dGj

−Ui"x\ v#gG
T
k

i "j\ x\ v^ n# dGj¦gV
Fi"j\ v#U
k

i "j\ x\ v# dVj

� Uk"x\ v#\ x $ V[ "20#

Furthermore\ in the proposed decomposition of the dynamic point!load Green|s functions "U
k
i \

T
 k
ij# into a static part "ðU
k

i Ł0\ ðT
 k
ijŁ0# and a residual "ðU
k

i Ł1\ ðT
 k
ijŁ1# "see eqn "16##\ the singular and

regular parts have the properties such that
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ðT
 k
ij\jŁ0¦dikd"x−j# � 9\ "21#

and

ðT
 k
ij\jŁ1¦rv1U
k

i � 9[ "22#

A consequence of eqn "21# is that

gG
ðT
k

i "j\ x\ v^ n#Ł0 dGj � 6
−dik\ x $ V "Int[ Problem#

9\ x $ V "Ext[ Problem#7[ "23#

On account of eqns "21# to "23#\ eqn "20# can be reduced to

gG
Ti"j\ v^ n#U
k

i "j\ x\ v# dGj−gG
ðUi"j\ v#−Ui"x\ v#ŁðT
k

i "j\ x\ v^ n#Ł0 dGj

−gG
Ui"j\ v#ðT
k

i "j\ x\ v^ n#Ł1 dGj¦gV
Fi"j\ v#U
k

i "j\ x\ v# dVj

� 6
9 "Int[ Problem#

0 "Ext[ Problem#7Uk"x\ v#\ x $ V[ "24#

Provided that the displacement Ui"x\ v# satis_es the Ho�lder continuity condition and the traction
Ti"x\ v^ n# is not too singular on the boundary\ all the integrands in eqn "24# will be at most weakly
singular as x : y $ G in the integrations intended[ Accordingly\ one can write\ with reference to
the Green|s function decomposition in eqn "16#\ that

gG
Ti"j\ v^ n#U
k

i "j\ y\ v# dGj−gG
ðUi"j\ v#−Ui"y\ v#ŁðT
k

i "j\ y\ v^ n#Ł0 dGj

−gG
Ui"j\ v#ðT
k

i "j\ y\ v^ n#Ł1 dGj¦gV
Fi"j\ v#U
k

i "j\ y\ v# dVj

� 6
9 "Int[ Problem#

0 "Ext[ Problem#7Uk"y\ v#\ y $ G[ "25#

Equation "25# represents a direct boundary integral equation formulation which is free of "i#
Cauchy principal values and "ii# the need of the coe.cients cik[ Because of such features\ its
numerical implementation is straightforward\ requiring only a minor re!arrangement of terms in
a conventional code[ As a re_ned analog of Sladek and Sladek "0880#\ the regularized integral
format can be generalized to tackle seismic wave excitation problems in earthquake engineering as
will be shown in the next section[ With its analytical simplicity\ the integral eqn "25# is preferable
over eqn "19# as the mathematical foundation for developing rigorous treatments of complicated
singular mixed boundary value problems "Sternberg\ 0879# such as those involving sharp body
geometries and material discontinuities in geomechanics and soil!structure contact problems[ For
completeness\ its connection with the conventional boundary integral eqn "19# can also be recog!
nized by virtue of eqns "06#\ "15#\ "23# and the identity
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cik"y#¦ g−G
T
k

i "j\ y\ v^ n# dGj � dik¦lim
o:9 gG−Go¦G
 o

T
k
i "j\ y\ v^ n# dGj

� gG
ðT
k

i "j\ y\ v^ n#Ł1 dGj¦6
9 "Int[ Problem#

0 "Ext[ Problem#7dik\ y $ G[ "26#

In engineering applications where the body!force _eld can be ignored or incorporated separately\
the governing boundary integral equation in eqn "25# further simpli_es to

gG
Ti"j\ v^ n#U
k

i "j\ y\ v# dGj−gG
ðUi"j\ v#−Ui"y\ v#ŁðT
k

i "j\ y\ v^ n#Ł0 dGj

−gG
Ui"j\ v#ðT
k

i "j\ y\ v^ n#Ł1 dGj � 6
9 "Int[ Problem#

0 "Ext[ Problem#7Uk"y\ v#\ y $ G "27#

which is the framework employed in the following treatment[

3[ Application to seismic soil!structure interaction

3[0[ Multi!layered viscoelastic half!space Green|s functions

To incorporate the important e}ects caused by in situ variations of soil parameters and strati!
_cations of soil media\ a complete set of displacement and stress Green|s functions for an isotropic\
piecewise!homogeneous\ multi!layered\ viscoelastic half!space has been developed for earthquake
engineering and soil dynamics applications "Guzina\ 0885#[ In contrast to past treatments "e[g[
Luco and Apsel 0872^ Apsel and Luco\ 0872#\ the mathematical solution is derived by the propa!
gator!matrix approach "Thomson\ 0849^ Haskell\ 0842# in conjunction with a method of potentials
and Hankel transforms "Pak\ 0876#\ leading to a concise and e.cient approach to this class of
complicated elastodynamic boundary value problems[ More importantly\ with the aid of a set of
dual representations for the static bi!material full!space Green|s functions "Guzina and Pak\ 0887#\
a systematic procedure is established by which the singular part of the integral representations of
the dynamic multi!layered Green|s functions can always be extracted completely[ Such a possibility
is central to an accurate numerical evaluation of the fundamental solutions as well as the theoretical
foundation of the regularized direct boundary integral equation method[ By a judicious contour
integration on the complex wave!number plane\ the oscillations of the residual Green|s function
integrands can be greatly reduced "Pak\ 0876# while the exact limit of purely elastic soil behavior\ an
important theoretical benchmark\ can be realized with no di.culty[ To illustrate the fundamental
importance of the proposed Green|s function decomposition in a rigorous treatment\ the di}erence
between the time!harmonic vertical displacement Green|s function for a unit vertical point load in
the interior of a three!layer elastic half!space "see Fig[ 3# and the pertinent static bi!material
solution along the z!axis is shown in Fig[ 4 as an example[ From the plot\ one can see that the
residual Green|s function after the proposed extraction is indeed smooth and _nite\ with no
singularity anywhere[ This is in contrast to the performance shown in the same _gure of the
common scheme of subtracting from the Green|s function the Kelvin|s or Mindlin|s state with a
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Fig[ 3[ An axial point load in a three!layer half!space[

Fig[ 4[ Singularity extraction for dynamic Green|s function[

locally averaged shear modulus and Poisson|s ratio[ As is evident from the display\ a serious
residual singularity persists in the Green|s function despite such an extraction\ demonstrating the
inadequacy of the popular method[

The advantages of employing Green|s functions for the half!space geometry to represent the
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Fig[ 5[ Domain decomposition of soil!structure!foundation systems[

semi!in_nite open soil region Ve in the generic soil!structure interaction problem shown in Fig[ 5
can be easily seen by considering the boundary G in eqn "27# for exterior problems as composed
of Gb¦G?\ where Gb is the soil!foundation interface and G? is the part of the free surface of the
half!space closing out the open region Vb "see Fig[ 5b#[ As the boundary G? can be regarded as
_ctitious\ one can require that the traction!free condition

Ti"j\ v^ n"j## � 9\ j $ G? "28#

be satis_ed[ Owing to the fact that the traction Green|s functions for the half!space also vanish on
G?\ i[e[

T
k
i "j\ y\ v^ n"j## � 9\ j $ G?\ "39#

the regularized direct boundary integral eqn "27# for the soil domain reduces to

gGb

Ti"j\ v^ n#U
k
i "j\ y\ v# dGj−gGb

ðUi"j\ v#−Ui"y\ v#ŁðT
k
i "j\ y\ v^ n#Ł0 dGj

−gGb

Ui"j\ v#ðT
k
i "j\ y\ v^ n#Ł1 dGj � Bik"y\ v#Ui"y\ v#\ y $ Gb "30#

where

Bik"y\ v# � dik−gG?

ðT
k
i "j\ y\ v^ n#Ł0 dGj\ y $ Gb[ "31#

As can be seen from the governing boundary integral eqn "30#\ the formulation using half!space
Green|s functions involves quantities on the soil!foundation interface Gb only[ Furthermore\ the
integral in eqn "31# needs to be evaluated only if the singular part of the traction Green|s function
does not satisfy the traction!free condition on G?[ In using the dynamic fundamental solution for
a piecewise homogeneous multi!layered half!space\ the singular part of its traction Green|s func!
tions at any material point is taken\ as mentioned earlier\ to be the static bi!material full!space
Green|s function with its plane of material discontinuity aligned with the nearest solid interface in
the multi!layered medium[ By virtue of this de_nition\ the singular part of the Green|s function
will degenerate to Mindlin|s solution if the nearest interface is the free!surface[ As a result\ the
integral on the right!hand side of eqn "31# is possibly nonzero only for collocation points y which
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are su.ciently far from G?[ As such\ the integrand in eqn "31# will not be singular and may be
e.ciently integrated by regular quadrature[

To treat the _nite domain Vi of the embedded foundation or structure in Fig[ 5c as a continuum
"e[g[ in the case of a dam#\ the boundary integral equation format in eqn "27# for interior problems
can be employed with the boundary surface identi_ed as Ga¦Gb[ With the outward normals to the
excavated half!space and the embedment denoted as n and n?\ respectively "see Fig[ 5a#\ the
interfacial displacement and traction compatibility conditions on Gb may be written as

Ui"y\ v# � Vi"y\ v#\ Ti"y\ v\ n# � −Si"y\ v\ n?#\ y $ Gb[ "32#

In the above\ Ui and Ti are the boundary displacements and tractions of the soil region Ve\ while
Vi and Si are the boundary displacements and tractions for the structure:foundation domain Vi[
As will be seen in the next section for seismic excitations\ a system of boundary integral equations
involving unknowns on only Ga and Gb can be formulated for general continuum soil!structure
interaction problems[

3[1[ Scatterin` problems

To ensure the generalized regularity condition "02#\ is satis_ed so that the boundary integral
equation formulation in eqns "27# or "30# is valid\ the source of dynamic excitation must be located
in a _nite subdomain in the in_nite exterior region[ For scattering problems such as those involving
incident seismic waves from in_nity\ however\ the total solution would clearly violate the regularity
condition "02#[ To circumvent the di.culty\ the approach of decomposing the total displacement
_eld U�i "j\ v# in a seismic problem into a free _eld UF

i and a scattered _eld US
i such that

U�i "j\ v# � UF
i "j\ v#¦US

i "j\ v# "33#

can be employed where UF
i "j\ v# is de_ned to be the response of the corresponding unexcavated

half!space due to the prescribed incident body or surface seismic waves "see e[g[ Niwa et al[\ 0875#[
In the case of a homogeneous medium\ the free!_eld motion is composed of the incident waves
and those re~ected by the free!surface[ In the case of a multi!layered half!space\ however\ it includes
the multiple re~ections and refractions caused by the free surface and all internal layer interfaces[
With such de_nitions\ the free _eld and the scattered _eld must therefore satisfy the Navier
equations with zero body forces independently[ With the scattered _eld satisfying the generalized
regularity condition "02# as an additional consequence\ an integral representation for US

i in the
soil domain can be written as

D"x#US
k "x\ v# � gGb

TS
i "j\ v^ n#U
k

i "j\ x\ v# dGj

−gGb

US
i "j\ v#T
k

i "j\ x\ v^ n# dGj\ D"x# � 6
0\ x $ Ve

9\ x $ Vb7\ "34#

where U
k
i and T
k

i are the displacement and traction Green|s functions for a multi!layered half!
space as in "30#\ and TS

i is the traction _eld associated with the scattered motion[ Owing to the
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fact that the free _eld satis_es the Navier equations of motion in the unexcavated half!space\ one
can also use the integral representation for internal!domain problems to write

D"x#UF
k "x\ v# � gGb

TF
i "j\ v^ n?#U
k

i "j\ x\ v# dGj

−gGb

UF
i "j\ v#T
k

i "j\ x\ v^ n?# dGj\ D"x# � 6
9\ x $ Ve

0\ x $ Vb7[ "35#

By virtue of eqn "33# and the identities

n?"j# � −n"j#\ TS
i "j\ v^ n?# � −TS

i "j\ v^ n#\ j $ Gb[ "36#

Equations "34# and "35# may be subtracted from each other\ since they involve integrals over the
same boundary domain Gb[ As a result\ an integral representation of the total _eld in the excavated
half!space Ve and its complement Vb can be expressed as

D"x#U�k"x\ v# � UF
k "x\ v#¦gGb

T�i "j\ v^ n#U
k
i "j\ x\ v# dGj

−gGb

U�i "j\ v#T
k
i "j\ x\ v^ n# dGj\ D"x# � 6

0\ x $ Ve

9\ x $ Vb7 "37#

in terms of the half!space Green|s functions[
Finally\ upon taking the limit x : y $ Gb with x $ Ve\ one gets a direct boundary integral equation

for the exterior domain Ve in terms of the total displacement _eld U�i and traction _eld T�
i in

gGb

T�i "j\ v^ n#U
k
i "j\ y\ v# dGj−gGb

ðU�i "j\ v#−U�i "y\ v#ŁðT
k
i "j\ y\ v^ n#Ł0 dGj

−gGb

U�i "j\ v#ðT
k
i "j\ y\ v^ n#Ł1 dGj¦UF

k "y\ v# � Bik"y\ v#U�k"y\ v#\ y $ Gb\ "38#

where Bik is de_ned by eqn "31#[ One may observe that the only di}erence of eqn "38# from the
boundary integral eqn "30# is the free!_eld term on the left!hand side for the seismic problem[

In treating the structural:foundation domain Vi as a continuum\ the interior format of the
boundary integral equation formulation in eqn "27# can be used\ leading to

gGa¦Gb

S�i "j\ v^ n?#V
k
i "j\ y\ v# dGj−gGa¦Gb

ðV�i "j\ v#−V�i "y\ v#ŁðS
k
i "j\ y\ v^ n?#0 dGj

−gGa¦Gb

V�i "j\ v#ðS
k
i "j\ y\ v^ n?#Ł1 dGj � 9\ y $ Ga¦Gb "49#

where V
k
i and S
k

i can be taken to be the pertinent full!space displacement and traction Green|s
functions for the domain Vi[ Boundary integral eqns "38# and "49# are coupled through the
interfacial conditions in eqn "32# and can be solved numerically upon discretization[ For the case
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of a discrete structural domain such as a building\ eqn "49# can be replaced by a dynamic sti}ness
matrix representation which may permit a further reduction in the degrees of freedom[

3[2[ Sin`ular contact tractions

Typical in all common soil!foundation con_gurations is the presence of sharp geometries such
as corners and edges[ The result is the theoretical occurrence of singular contact tractions at the
soil!foundation interfaces which can create inaccuracy and poor convergence in the numerical
analysis[ To improve the performance of boundary integral equation methods\ the incorporation
of special elements capable of representing singular tractions would thus be desirable[ Such an
approach dates back to Cruse and Wilson "0866# on the application of boundary integral equation
methods to linear fracture mechanics[ A recent example is the continuous eight!node quadratic
element with one square!root singular edge "Luchi and Rizzuti\ 0882# for three!dimensional crack
analysis[ Aggravating the situation further\ however\ is the fact that the boundary or interfacial
tractions are also non!unique at such abrupt geometric locations[ Such a problem can be alleviated
by the use of double nodes\ tangential derivatures and Hooke|s law\ or discontinuous boundary
elements "e[g[ Rego Silva et al[\ 0882^ Stamos and Beskos\ 0884#[ To further elevate the performance
and ~exibility of boundary integral equation methods in handling the foregoing aspects sim!
ultaneously in three!dimensional elastodynamics and elastostatics\ a set of four!node semi!dis!
continuous singular edge and corner elements is developed "Guzina\ 0885# for modeling such
boundary tractions[ For instance\ the traction shape functions for the singular edge element are
de_ned to be

ft
0"h0\ h1# �

10−k0

Re

"0−h1#"−"0−c#k0"0−h0#k0−0¦"0−h0#1k0−0#\

ft
1"h0\ h1# �

"0−c#0−k0

Re

"0−h1#"1k0"0−h0#k0−0−"0−h0#1k0−0#\

ft
2"h0\ h1# �

"0−c#0−k0

Re

"0¦h1#"1k0"0−h0#k0−0−"0−h0#1k0−0#\

ft
3"h0\ h1# �

10−k0

Re

"0¦h1#"−"0−c#k0"0−h0#k0−0¦"0−h0#1k0−0#\ "40#

Re � 1"1k0−"0−c#k0#\ "41#

with reference to the parent element domain in Fig[ 6[ In contrast to the singular elements used in
conventional fracture mechanics where only the square!root singularity is of interest "e[g[ see Luchi
and Rizzuti\ 0882#\ the constructed traction shape functions can be used to represent power!
type singularities of any order via a suitable choice of the parameters k0 and c[ Apart from being
capable of dealing with arbitrary power!type surface traction singularities and discontinuities
across boundary elements\ these elements also permit a smooth transition to standard bilinear
quadrilateral elements away from the edges[ Together with a corresponding family of non!singular
isoparametric displacement and geometric shape functions\ the singular surface elements have
been implemented into a computational platform for the regularized boundary integral equation
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Fig[ 6[ Singular edge element] parent domain[

method on the basis of Gaussian quadrature[ Enhanced by the foregoing analytical and com!
putational developments\ the regularized direct boundary integral equation method is found to
perform very well\ with fast and stable convergence in both primary and secondary variables[ To
illustrate the performance of the composite scheme\ selected numerical results are presented in the
next section[

4[ Numerical results

By means of the regularized boundary integral equation method discussed\ a set of benchmark
solutions have been generated for some fundamental soil!structure interaction problems associated
with a rigid block foundation with arbitrary embedment under forced and seismic wave excitations[
To provide a full picture of the response\ typical results of the foundation!soil contact tractions\
dynamic impedances for surface and embedded foundations\ as well as the seismic input!motion
functions will be given as illustrations[ For reference\ the key notations in the soil!structure
interaction problem are de_ned in Fig[ 7[

As a degenerate case of the foundation con_guration shown in Fig[ 7\ the problem of a square
rigid surface foundation of dimension 1a×1a with h � 9 which is fully bonded to a homogeneous
isotropic elastic half!space with a shear modulus m\ mass density r and Poisson|s ratio n � 0:2 is
_rst examined[ Under the fully!bonded interfacial condition\ the contact traction singularity at the
foundation edges is of the square!root type which is accounted for through the use of the singular
boundary elements discussed in the last section[ An example of the contact shear stress distribution
beneath the footing undergoing a time!harmonic pure horizontal translation Dx at a dimensionless
frequency v¹ � va:zm:r � 1[4 is shown in Fig[ 8 where the prominence of the singularities at the
edge and corner regions is clearly displayed[ The corresponding foundation impedance Khh is
shown in Figs 09 and 00 in terms of the normalized horizontal sti}ness and damping coe.cients
khh and chh which are de_ned by
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Fig[ 7[ Geometry of embedded foundation and coordinate system[

Khh"v¹ # � ma"khh"v¹ #¦iv¹ chh"v¹ ##[ "42#

Included in the _gures are the results obtained by the indirect boundary element methods in "i#
Wong and Luco "0874# who employ a piecewise constant stress distribution "see Mita and Luco
"0878# for tabulation#\ and "ii# Triantafyllidis "0875# whose formulation recognizes the singularity
of the contact stresses but demands numerical computation of di.cult improper double integrals[
In the example\ the performance of Wong and Luco "0874# is apparently better than Triantafyllidis
"0875#[

The next example is the case of an embedded\ massless\ rigid block foundation\ with dimension
1a×1a with h � a\ bonded to a homogeneous viscoelastic half!space with a complex shear modulus

m � m9"0¦1iz# � m9"0¦9[991i# "43#

and a Poisson|s ratio n � 0:2[ The parameter z � 9[990 is the hysteretic damping ratio which is
taken to be common for both compressional and shear waves[ The resulting dynamic foundation
impedances Khh and Kmm are shown in Figs 01 and 02 with reference to the center of the foundation
base "9\ 9\ h# in terms of the sti}ness and damping coe.cients in

Kmm"v¹ # � ma2KÞmm"v¹ # � ma2"kmm"v¹ #¦iv¹ cmm"v¹ ##[ "44#

For comparison\ the result of Mita and Luco "0878# who employ an o}!boundary source!col!
location scheme together with a _nite element discretization for a similar viscoelastic half!space
with a slightly complex Poisson|s ratio of n � 0:2−9[99906 i is also included[

By means of the direct boundary integral eqn "38# for seismic wave problems\ the foundation
input!motion functions for a variety of incident seismic wave forms can be computed[ As illus!
trations\ the translational and rocking components D�y and U�x of the foundation input!motion
response vector for the previous embedded foundation due to a vertically incident SH!wave of
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Fig[ 8[ Contact shear traction due to horizontal translation of rigid surface foundation "n � 0:2\ v¹ � 1[4#[

displacement amplitude Dsh in the y!direction are shown in Figs 03 to 04[ From the display\ the
performance of Mita and Luco "0878# can also be seen to be reasonable[

5[ Conclusions

Upon a fundamental examination of the mathematical basis of the analytical theory\ a reg!
ularized format of the direct boundary integral equation formulation for three!dimensional ela!
stodynamics is established for general applications in solid and geomechanics problems[ Founded
on the premise of a complete decomposition of the Green|s functions into their singular and regular
parts\ the regularized boundary integral equation formulation is shown to be analytically appealing
without demanding mathematical and numerical complexities such as Cauchy principal values[
Extended to deal with general seismic soil!structure interaction problems in semi!in_nite media\
the formulation is implemented computationally together with a consistent singularity treatment
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Fig[ 09[ Sti}ness coe.cient khh\ square surface foundation "n � 0:2#[

Fig[ 00[ Damping coe.cient chh\ square surface foundation "n � 0:2#[
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Fig[ 01[ Dynamic impedance Khh\ embedded square foundation "n � 0:2\ z � 9[991\ h � a#[

Fig[ 02[ Dynamic impedance Kmm\ embedded square foundation "n � 0:2\ z � 9[991\ h � a#[
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Fig[ 03[ Foundation input motion Uy due to vertically incident SH!waves "n � 0:2\ z � 9[991\ h � a#[

Fig[ 04[ Foundation input motion Rx due to vertically incident SH!waves "n � 0:2\ z � 9[991\ h � a#[

of multi!layered viscoelastic half!space point!load Green|s functions as well as a rigorous account
of the unbounded contact tractions in the related singular mixed boundary value problems[ As
illustrations\ a set of new benchmark solutions for some basic dynamic soil!structure interaction
problems are also included[
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